2.6.1 Lab 4¶
Part I. Linear Independence¶
Determine if the sets of vectors are linearly independent or linearly dependent. Explain your reasoning for each set. If they are linearly dependent, give the dependence relation.
If your birthday is in:
January through April, do the sets of vectors \(\vec v\).
May through August, do the sets of vectors \(\vec x\).
September through December, do the sets of vectors \(\vec y\).
First:
v1 = [-1 ; 0 ; 0 ; 0 ] ;
v2 = [-2 ; 15 ; -6 ; 3 ] ;
v3 = [4 ; 9 ; -3 ; 5 ] ;
v4 = [0 ; 10 ; -4 ; 2 ] ;
Second: $\(\left\{ \vec v_5 =\left[\begin{array}{r}5\\0\\0\\0\\\end{array}\right],\vec v_6=\left[\begin{array}{r}-1\\2\\-2\\0\\\end{array}\right],\vec v_7=\left[\begin{array}{r}2\\-2\\7\\15\\\end{array}\right],\vec v_8=\left[\begin{array}{r}1\\-3\\5\\8\\\end{array}\right] \right\}\)$
v5 = [5 ; 0 ; 0 ; 0 ] ;
v6 = [-1 ; 2 ; -2 ; 0 ] ;
v7 = [2 ; -2 ; 7 ; 15 ] ;
v8 = [1 ; -3 ; 5 ; 8 ] ;
First:
x1 = [0 ; 9 ; -1 ; 1 ] ;
x2 = [4 ; -11 ; 1 ; -1 ] ;
x3 = [7 ; -17 ; 2 ; -2 ] ;
x4 = [3 ; 12 ; -1 ; 1 ] ;
Second:
x5 = [-1 ; -2 ; -1 ; -2 ] ;
x6 = [-1 ; 5 ; -2 ; 2 ] ;
x7 = [-1 ; -12 ; 0 ; -9 ] ;
x8 = [-1 ; -15 ; 0 ; -11 ] ;
First:
y1 = [-1 ; 3 ; 1 ; 0 ] ;
y2 = [49 ; -122 ; -49 ; 5 ] ;
y3 = [34 ; -82 ; -34 ; 4 ] ;
y4 = [-44 ; 247 ; 84 ; -1 ] ;
Second:
y5 = [12 ; 0 ; 0 ; 12 ] ;
y6 = [0 ; 4 ; 0 ; 0 ] ;
y7 = [19 ; -3 ; 1 ; 19 ] ;
y8 = [76 ; -6 ; 5 ; 77 ] ;
Part II. Null Space in Vector Form¶
Find the null space for the given matrix, and write the solution set in vector form.
If your first name begins with:
A through D, do A.
D through J, do D.
J through Z, do J.
A = [1 2 1 1 ; -2 1 1 -3 ; 1 -3 -1 3 ] ;
D = [2 6 -4 11 ; 0 -8 5 -14 ; 0 12 -7 19 ] ;
J = [1 8 5 4 ; 2 91 40 38 ; -2 -16 -9 -10 ] ;
Part III: Column Space¶
The column space of matrix \(A\) is the span of its columns. Find the column space for the following matrices.
If your last name begins with:
B through G, do B.
H through Q, do H.
R through Z, do R.
A pick any of the three.
B = [2 2 5 1 ; -2 -2 -5 -2 ; 0 0 0 -1 ; 2 2 5 1 ] ;
H = [0 -2 -1 5 ; 0 -2 -1 5 ; 5 1 -2 0 ; 0 1 1 -1 ] ;
R = [-3 2 2 0 ; -1 -1 1 4 ; -3 -3 3 17 ; 0 0 0 -1 ] ;